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EXCHANGE OF HEAT IN AN ORTHOTROPIC BOUNDED CYLINDER UNDER COMBINED 

BOUNDARY CONDITIONS OF THE FIRST, SECOND AND THIRD KINDS 

A. G. Shashkov, G. M. Volokhov, and V. N. Lipovtsev UDC 536.21 

We present the results from a study of a two-dimensional nonsteady temperature 
field and the heat flows in an orthotropic bounded cylinder. A method is pro- 
posed for the determination of the thermophysical properties and their ratios, 
as well as for the determination of the coefficient of heat exchange at the 
side surface. 

In contemporary manufacturing, science and engineering, new materials are being util- 
ized to an ever-increasing extent, and many of these exhibit significant nonuniformity (ani- 
sotropy). Among these materialswe can include complex composition laminar structures (qua- 
sianisotropic materials). 

We must recognize that the theoretical and experimental foundations on which th~ meth- 
ods employed to study thermophysical properties (TPP) of anisotropic materials [1-5] are in 
need of further refinement and development [6]. 

It was demonstrated in [7, 8] that the solutions of two- and three-dimensional thermal 
conductivity problems can be employed to describe the processes of transfer in orthotropic 
media. For the case of heat exchange in a medium of constant temperature these solutions 
were made part of the method [I] for the determination of the coefficients of thermal diffus- 
ivity in solid materials. The method calls for the fabrication of two (or three) specimens 
of various sizes, these subsequently subjected to testing in accordance with a regular re- 
gime method. As an example of an integrated study of TPP we can point to a method based on 
the one-dimensional solution of the thermal-conductivity problem for a specific flow of heat 
[3]. The investigation in this case is carried out by specifying a recorded thermal flow, 
initially in one, and then in another, mutually perpendicular direction. It should be point- 
ed out that in [1-4] no analysis is undertaken with regard to the dynamics of the develop- 
ment of temperature fields and flows of heat ascribed to anisotropy0 

It is the purpose of the present study to develop a method for the determination of the 
TPP of materials, using specimens in the shape of an orthotropic bounded cylinder and to an- 
alyze the unique features encountered in the development within that cylinder of temperature 
fields and heat flows. 

Formulation of the Problem. A bounded orthotropic cylinder of height h and dimaeter 2R 
with TPP Xr, a~ lz, az is given. The initial temperature of the object is TQ = const, At 
some instant of time a constant flow of heat with a specific density of q0 is applied to one 
of the ends of the cylinder (the coordinate origin is located in the active plane of the 
source), while a constant temperature Tc, different from the initial temperature, is main- 
tained at the other end of the cylinder. At the side surface of the cylinder we note that 
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Fig. i. The function ~*(0, 0, x) = 
f(Fo h) for Bi R = i0: I) K = 0.2, K a = 
i; 2) 0.2 and I0; 3) 0.2 and 50; 4) 
0.6 and i; 5) K = i, K= = i. 

~T 

under the boundary conditions 

there takes place, based on Newton's Law, a convective exchange of heat with a medium exhi- 
biting the initial temperature. We have to find the temperature field at any point on the 
cylinder for any instant of time �9 > 0. 

The mathematical formulation of the problem is as follows: we have to solve a differ- 
ential equation of the following form: 

1 -OT,] + a, dzT __ OT (x > O) ( 1 ) 
r ar Oz~ dx 

T (r, z, 0) = To = const; ( 2 )  

_~, ~Ti(r, O, x) (3) 
az = qo; 

T(r, h, x ) = r = ;  (4) 

OT (R, z, x) 
dr =a[T(R, z, x)--T, l .  (5) 

The solution of Eq. (i) under boundary conditions (2)-(5), obtained by means of the me- 
thods of infinite integral Laplace transforms and the finite integral Hankel transform, has 
the form: 

- C 0 O(r, z, Foh)= qoh E s  2ArJo ~" cos F.n z (6) 
Xz .~i I~ + 6~K.K: x 

• 
m = l  n-~l 

where 

n = l  

x [I -- exp t--(~ + 6~K4/~) Fohl] + (Tr -- Te): x 

(--1)"+'2A.A (a. --~-) t~ cos (~--~-) 
I1 - -  exp l--~2n + a~K,,~)Fohtl,  

_ 2Ji (a.) 
A.- a. IJB (a.) + Jf @.)I" 

6 m are the roots of the characteristic equation 

J~(8.) 8. 
A(8.) Bi. 

Nn are the roots of the equation 

cos !~. = 0, 

i.e., Bn = [(2n- i)~/2]. 

The solution for (6) can be written in another form that is more convenient for the 
purposes of this study: 

O(r, z, F o b ) =  qoh h - -  
X, _ 8. V K. K ch (Sin I/K. K) 

(7) 

(8) 
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since [10 ]  

TABLE i. Specific Flows in the Directions of the z and r Axes 
in the Steady-State Regime at Various Points of the Bounded 
Orthotropic Cylinder, for Various Ka (K = 0.6, Bi R = i0) 

"~-" I ~ - ~ - ~  - ~  I ~ - '  t~--~ I-~T-~ 1~-~ I q-T-I ~-;-I 
0,001 ) 1 

),210,997 
),4l 0,994 
),6l 0,991 
],810,988 
1 0,985 

0,01 3 1 
3,2l 0,990 
3,410,980 
) ,61 0,971 
3,8]0,961 
I 0,951 

0,I  9 I 
O ,2l 0,96~ 
O ,410,935 
0,610,901 
O, 8[ 0,868 i 
i 0,8351 

0 1 
0,2l 0,807 
0,4l 0,63C 
o,61o,4881 
0,8] 0,3861 
1 0,318 I 

100 0 1 
0,210,02C 
0,410 
0,610 
o,81o 
1 i0 

I 

fi00 0 l i 
0,210 
0,41 0 
0,61o 
0,81 o 
1 lo 

0 1 
0 0,997 
0 0,994 
0 10,990 
0 0,987 
0 0,984 

0 1 
0 I 0,990 
0 10,980 
0 10,970 
0 10,960 
o Io,~9 

011 oio,  
0,932 

0 0,896 
0 0,862 
0 0,829 

0 1 
0 0,798 
0 0,616 
0 0,473 
0 0,372 
0 0,306 

O I 
0 0,019 
0 0 
0 0 
0 0 
0 0 

0 1 
O 0 
O 0 
0 0 
0 0 
0 0 

0 
0 
0 
0 
0 
0 

% 

1 
0,893 
0,839 
O, 799 
0,769 
0,745 

1 
0,748 
0,641 
0,574 
O, 528 
0,496 

I 
0,502 
0,358 
0,285 
0,243 
0,217 

I 
0,230 
0,I18, 
0,075 ! 
0,054 
0,042 

1 
0,002 
0 
0 
O 
0 

1 
0 
0 
0 
0 
0 

- _ g+ x 

X exp ,--(~] + 61K./~) Fo~]} + (To -- To){ 

X 

x ~,~ + 8~K.I~ 

X 

X 

�9 q r  

q o  - 

0,005 
0,004 
0,003 
0,002 
0,001 
0 

0.046 
0,032 
0,022 
0,014 
0,006 
0 

0,303 
0,183 
0,113 
0,065 
0,029 
0 

1,469 
0,623 
0,319 
O, 159 
0,062 
0 

15,902 
0,112 
0,001 
0 
0 
O 

35,589 
0,001 
0 
0 
0 
0 

E cos [(2m + 1) xl 

m=o ( 2 m +  1 ) 2 + C  2 4C 

(9) 
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Fig. 2. The function Cst* = f(Ko, BiR) for the points r = z = 0 (curves i, 3) and 
r = 0.9 R, z = 0 (curves 2, 4): 1 and 2) Bi R = i0; for curves 3 and 4) Ko = i. 

Fig. 3. The function of the relative contribution of the first term in series (22) 
to the sum of the entire series (in percent) for Bi R = i0; i) Ko = 0.27; 2) 0.4; 3) 
0.6;  4) Ko = 0.8.  6, %. 

~(_1) = (2m+ l)cost(2m + 1)xl a ch(Cx) 
@ 

In the  p a r t i c u l a r  case in which the  m a t e r i a l  being i n v e s t i g a t e d  i s  i s o t r o p i c ,  i . e . ,  
Ka = i, the solution of (9) coincides with the solution presented in [ii]. 

Analysis of (9) shows that the entire heat-exchange process can be broken down into 
three stages: one that is purely nonstationary, a regular stage, and the steady-state stage 
with the steady distribution of temperature dependent on the Kirpichev criterion and the ex- 
cess temperature T c - T o . 

One of the practical aspect of applying solution (9) is the possibility of calculating 
the temperature fields and thermal flows in real orthotropic objects of cylindrical shape. 
However, the fundamental goal of the subsequent analysis is the application of expression (9) 
to determined TPP. 

The initial formulation of the problem and the solution for (9) makes it possible for 
us to recommend various methods of integrated research into the TPP and the coefficient of 
heat exchange. Let us consider some of these. 

Solution (9) represents the superposition of two thermal-conductivity problems corres- 
ponding to the following particular cases: 

1) qo = O, T c # To; 

2) qo ~ O, T c = T o . 

Let us limit ourselves to an examination of the second case, writing a simplified version 
of solution (9) in criterial form: 

O*(r, z, Fob)= ~Am~= (Sm--~--) 8 m V - ~ a K c h ( S m V " ~ - a K )  - -  

2 = AmJo 8m Ix ~ -{- 6%KaKS exp [--(l~ -{- 8%KaK 2) Fob] = O~t(r, z) + 0 nonst (r, z, Foa). 

If we assume that Ka = i, we obtain the solution, given in [9], which as K + 0 with con- 
sideration of the following relationships from [i0] 
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TABLE 2. The Ratio N I = [@st*(r2, 0)/r 0)] as a Func- 
tion of Bi R for Various K 

Bi R 

0,1 
0,5 
1 
2 
3 
5 
7 

10 
13 
15 
17 

0,15 

0,993 
0,981 
0,968 
0,951 
0,925 
0,894 
0,869 
0,846 
0,826 
0,816 
0,807 

K 
0,2 

0,991 
0,972 
0,948 
0,916 
0,880 
0,835 
0,802 
0,769 
0,744 
0,731 
0,720 

0,25 

0,988 
0,960 
0,927 
0,880 
0,837 
0,779 
0,740 
0,701 
0,673 
0,659 
0,648 

4O 
5O 
60 
7O 
8O 
9O 

I00 

Bi R 
0,15 

20 0,795 
25 O, 774 
30 0,770 

0,756 
0,741 
0,734 
0,729 
0,728 
0,726 
0,717 
0,689 

1 s (6m)i 
changes into the familiar one-dimensional solution [9]: 

0,2 

0,707 
0,686 
0,678 
0,662 
0,648 
0,640 
0,634 
0,633 
0,630 
0,623 
0,594 

0,25 

0,634 
0,612 
0,604 
0,387 
0,576 
0,566 
0,560 
0,559 
O, 555 
0,552 
0,521 

z ' h - - z  (11) 
O* (z, Fob) = 1 sin ttn exp ( ~  Fob) * * = e~t(z) -- o nonst(z, Fob), 

h ~ l  !~ h 

where the numbers Pn are determined from the relationship (8). 

It follows from an analysis of (i0) that the propagation of heat in the radial ds 
tion (the appearance of two-dimensionality) at any point on the orthotropic cylinder depends 
not only on the conditions of heat exchange at the side surface and on the ratio of the geom- 
etric dimensions, but also on the relationship between the TPP, i.e., on the paramete:: Ka = 
K~. This relationship is clearly seen in the graphs shown in Fig. i. With K = 0.2 and K a ~ 
1 the temperature at the center of the cylinder corresponds to the "one-dimensional" (curve 
i) and may be described by relationship (ii). But when Ka > i, all other conditions being 
equal, the one-dimensionality is disrupted (curves 2, 3). With an increase in K the one-di- 
mensionality is also violated (curves 4, 5). However, even with K, but with Ka ~ i, the 
dependence on temperature is imposed on curve i. 

Consequently, in solution (i0) we must deal with the complex K~Ka, which is naturally 
contained here, and which places the same role as the parameter K in the two-dimensioral so- 
lution for the isotropicaily bounded cylinder. 

We will refer to this complex Ko = K~Ka as the criterion of temperature two-dime~sion- 
ality for an orthotropic cylinder of finite dimensions. Then, on the basis of [9], we can 
draw the conclusion that for any Bi R and Ko ~ 0.2, on the r = 0 axis in an orthotropic bound- 
ed cylinder, the excess temperature of @*(0, z, FOh), including the steady state, will be 
described with a rather small aurora (0.18%) by the one-dimensional solution (ii). Since in 
the isotropic cylinder with K ~ 0.2 and for any Bi R the temperature at the center (r = z = 
O) corresponds to one that is one-dimensional, and objective experimental criterion of the 
anisotropy of the material being studied is the difference @st* (0, 0, ~) from unity in the 
steady-state regime. This is valid for K a > I. However, K can be chosen in a manner such 
that Ko is smaller than 0.2, even when Ka < I. The objective anisotropy criterion for bod- 
ies with Ka < 1 will then be equality to unity for @st* (0, 0, ~) when K > 0.25. 

Let us examine solution (I0) and the specific flows of heat in the directions of ~he 
coordinate axes for the steady-state regime in the limit cases in which Ka + 0 and Ka ~ ~. 
The flows of heat for the steady-state regime are determined from the following expres:;ion: 
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Then 

qr(r, z) =V~aa ~ ~ R / I ~ t t  IJ (13) 

lira O* (r, z, Fort) = 1 
Ka~O 

cx~ 

z 2 '  ~ 
z.a 2 

h ,,=l I~. 

limqZ(r, z) = 1; 
Ka -'~ qo 

lira q '  (r, z) = O; 
K=-,o qo 

lira 0 "  (r, z, Fob) = O; 
K a . . ,  | 

lira qz(r, Z) Ilwith Z=0; 
K=-- qo [0 with O<z<~h; 

lim qr(r, z) 
K=~- qo 

exp (__2 FOb); 
(14) 

(15) 

( 1 6 )  

(17) 

(i8) 

(19) 

Through analysis of expressions (14)-(19) we can draw the conclusion that when Ka = K X + 0 
( a r~ a z) for any Bi R the temperature field over the entire volume of the orthotropic cylin- 
der will be described by a one-dimensional solution. There is an absence of a flow of heat 
in the radial direction, while in the direction of the z axis the heat flow q0 is transfer- 
red entirely from the z = 0 plane to the z = h plane, i.e., in this case the object under 
consideration serves as an ideal conductor of heat without any losses of heat to the side 
surface. We make no provision here for the quantity of heat which is expended on the actual 
heating of the body. 

As K.a + ~ (a r m a z) for any Bi R ~ 0 the specimen being studied is not heated (the temp- 
erature over the entire volume of the cylinder is equal to the initial temperature). There 
is an absence of a flow of heat in the direction of the z axis when 0 < z ~ h, while in the 
radial direction it is infinite, i.e., the heat is instantaneously removed in the z = 0 
plane. In this case, the orthotropic cylinder is an ideal heat insulator. However, if the 
coefficient of heat exchange at the side surface is equal to zero, i.e., Bi R = 0, the charac- 
teristic equation (7) assumes the form of Jz(6m) = 0 and the temperature field for the cylin- 
der will be described by the one-dimensional solution (ii) with TPP az, X z. 

After we have analyzed expressions (10) and (17)-(19), we find that as z = 0 increases 
there is a reduction in the height of the inside layer of the cylinder (adjacent to the K= 
(Ka > i), where the excess temperature and specific heat flow qz are different from zero. 
Where there is sufficiently large Ka , the height of this layer tends to zero. The radial 
flow of heat increases to the maximum. With Ka values sufficiently small (Ka < i) the rad- 
ial heat flow diminishes to zero while the flow along the z axis increases to q0 at all 
points of the orthotropic cylinder. This is confirmed by the data presented in Table i. 

Let us now look at the temperature field of an orthotropic bounded cylinder in the 
steady-state regime. The excess relative temperature in this case will be determined from 
the expression 

z 

where 

Ko = KVK-~-=. ( 2 1 )  

Figure 2 shows a graphic representation of the function in (20) for the points z = 0; 
r = 0 and z = 0; r = 0.9R. 

It follows from an analysis of the graphs (curves i and 2) that, for a given Bi R [in 
which case #st* = f(Ko)] it is possible to determine the Ko criteria from the measurement re- 
sults obtained on the excess temperature at two points; however, this applies only to a spec- 
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ific interval. Thus, at the point r = 0; z = 0 Ko can be determined in the range 0.3-40 
(curve i), while at the point r = 0.gR; z = 0 it is determined in the range from 0.G4-20 
(curve 2). The ratio of excess temperatures at these points yields the range of 0.04-20 
for the determination of Ko. If we know the ratio of the geometric dimensions K, from for- 
mula (21) we can find the TPP ratio. Thus, for example, with Ka = 0.2 the range for the de- 
termination of K= will be 0.4-10,000, while for K = 1 it will be 0.0016-400, i.e., by vary- 
ing the magnitude of the parameter K we can shift the range for the determination of Ka. 
With a fixed value for the quantity Ko [@st* =~(BiR)] and with Bi R e 1 the relationship be- 
tween the excess temperature and the Blot number is insignificant at specific points. How- 
ever, this relationship is intensified when Bi R < 1 (see curves 3 and 4). For Ko < ].3 
(Bi R can be any number) and Ko > i0 (Bi R ~ 0) the indicated relationship to temperat'~re on 
the part of Bi R is also insignificant. 

Thus, in the steady-state thermal regime, we have the possibility of determining the Ko 
criterion for a known value of BiR, which can be easily found experimentally in the ::egular 
thermal regime [i]. 

Let us examine the nonsteady component of solution (i0): 

O*nonst (r, z, F o b ) =  Os~(r, z ) - - O *  (r, z, FOb)= (22)  

= = AmJo 6m cos ~ T  
= 2 = exp + Fo. l  Fo l. 

The double series in (22) converges rapidly and for specific values of the Ko and Fo h 
numbers we can, with a sufficient degree of accuracy, limit ourselves to the first term of 
this series, i.e., a regular heat-exchange regime sets in. The time for the onset (qp) of 
the regular regime depends significantly on the value of Ko: the larger this number,-the 
smaller the time Tp. This is well-illustrated by the graphs in Fig. 3. 

Thus, in the regular thermal regime series (22) can be replaced by the first of its 
terms. The ratio @nonst* at two different points of the orthotropic cylinder (for e~ample, 
r I = z = 0; r 2 = 0.9R, z = 0) at one and the same instant of time ~i > z will then ~e a 
function exclusively of the first root of the characteristic equation (7~: 

* r @nonst(1, 0, ~) I = = 

O~o~t(r=, O, ~) 4(0.98~) 
Using expressions (23) and (7), we can determine the criteria and roots of Eq. (7). With 
Bi R = ~ the roots 6 m are found from the equation J0(~m) = 0. 

In the regular thermal regime, in the presence of heat sources and sinks, for an iso- 
tropic unbounded plate, the rates of change in temperature [see (Ii)] are determined from 
the following formula [9]: 

l O t-o*(z, ( 2 4 )  
n ~ v ~ t - -  ~ (z, ~) a ~  

~ __ ~ ~ (~ > ~ > T r ), 

i.e., the rate of heating is proportional to the coefficient of thermal diffusivity. In the 
case of an orthotropic cylinder (K = # i) the rate of change in temperature 

OSt-- 0"  (r, z, ~i) (25)  
In @~t-- 6"  (r, z, ~,,) , a~ 2 6~ 

is proportional to the sum of the thermal diffusivities in the direction of the coordinate 
axes. Then, with known 6z and Ko we can determine az and a~. 

Based on the above, we propose the following method for the determination of the TPP 
of an orthotropic bounded cylinder and the coefficient of heat exchange at the side s~rface. 

i. The case of an isotropic material (Ka = K% = i). We select the ratio of the geome- 
tric dimensions K such that the condition of temperature one-dimensionality is satisfied at 
the center of the cylinder (at the r = 0 axis), and this is meant to include the steady- 
state regime. Then, having measured the excess temperature, for example, at the points r I = 
z = 0 and r 2 = 0.9R, z = 0, we can determine the TPP of the body being studied. We deter- 
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mined the coefficient of thermal conductivity from the one-dimensional solution (ii) in the 
steady regime, while we determined the coefficient of thermal diffusivity in the regular re- 
gime, using expression (24) [9]. The ratio of steady temperatures at the points that we 
have selected will be a function only of the Bi R number: 

$ f 
N1 --= @st( ~, 0).  == f (Bin). (26)  

o$t(r , 0) 
Expression (26) can be calculated in advance and set up in the form of a table or nomogram 
(see Table 2). Having experimentally calculated the number N l, we determined the value of 
the Bi R from the table, and then the coefficient of heat exchange at the side surface, name- 
ly: 

Bin~ 
(27) 

2. K= = K% can be any arbitrary value. We will measure the excess temperature at the 
same point as in the first case. The Bi R number will then be found in the regular heat-ex- 
change stage, using expressions (23) and (7). Then, using the steady regime, we determined 
Ko and Ks by means of (20) and (21). After this, based on the information about the regular 
regime from (25) we find az; ar is found from the following formula: 

ar ~ Kaaz. 

The c o e f f i c i e n t s  o f  t h e r m a l  c o n d u c t i v i t y  in  t h e  d i r e c t i o n s  o f  t h e  c o o r d i n a t e  axes  a r e  e q u a l  
t o  : 

g =  Ost(0, 0 ) - - O ( 0 ,  0, ~) 8~ [ J~ (80nuJ~(80 ] ( l~+  8~Ko~) - exp - - ~ - - ] /  (x~>r r )  

~ = Ka%~. 
The heat-exchange coefficient for the side surface of the cylinder is determined from formula 
(27), having replaced I by the value of %r" 

Let us examine the case in which the excess temperatures at the indicated two points 
are equal to each other and not equal to zero. This means that az >> ar and the determina- 
tion of TPP is possible only along the z axis. However, if these excess temperatures are 
equal to zero, then arl >> az [see (17)] and it is impossible to determine the TPP in this 
case. This is characteristic of any plane 0 ~ z < h. 

NOTATION 

~(r, z, ~) = T(r, z, ~) - To, the excess temperature; ~*(r, z, T) = ~(r, z, T)/Ki To, 
dimensionless and excess temperature; Ki = q0h/kzT0, Kirpichev number; ~, ~r, current time 
and time of regular thermal regime onset; r, z, instantaneous coordinates; K = h/R, ratio of 
geometric dimension for the orthotropic cylinder; Xr, lz, ar , ~ , coefficients of thermal 
conductivity and thermal diffusivity in the directions Of the r and z axes; K~ = Kk = kr/ 
~z = a~ /az , ratio of thermophysical properties; Ko = K]/K~, orthotropic cylinder criterion 
of temperature two-dimensionality; Bi R = ~R/lr, Blot number; Fo h = ~ ~/h 2, Fourier criterion; 
J0(x), J1(x), Bessel functions of the first kind. 
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SPECTRAL INFLUENCE FUNCTIONS OF BOUNDARY EFFECTS IN PROBLEMS 

DEALING WITH CONTROL OF THERMAL OBJECTS 

Yu. M. Matsevityi, A. P. Siesarenko, and O. S. Tsakanyan UDC 536.12 539.377 

We describe a method for solving problems dealin~ with the optimum control of 
a thermal object that is based on high-speed action where limitations are im- 
posed on the control function and on the thermal state. 

The problem of optimum high-speed control of a thermal object whose dynamics ale des- 
cribed by the following equation of heat conduction 

~ ( x ,  Y, Fo) = v , T ( x  ' Y, Fo), (1) 
OFo 

consists in the determination of such control boundary effects, expressed by piecewise poly- 
nomial functions 

"' (2) 
q, (x, y,  Fo) = ~ a,j @'o) ~i ; t = !, ~ . . . . .  n ; f = 0, ! . . . . .  m,, 

t=o 

which would ensure the transition of the object from a given initial thermal state T(x, y, 0) 
to the final state T(x, y, Fo k) within a minimum of time, with satisfaction of the limita- 
tions imposed both on the controling action (the external limitation) 

qmm<qz(x, y, Fo)< qmax, (3) 

as well as on the thermal state of the object (an internal system of limitations) 

T(x, ~, Fo)<Tpe r, (4) 

A r e ,  g, V o ) < A r p ~ .  ( 5 )  

We will adopt the attainment of the maximum possible rate of temperature change in the 
object in conjunction with the given limitations (3)-(5) as the criteria of optimum control. 

Applying an implicit finite-difference approximation to Eq. (i), for k-th instant of 
time we obtain 

V~ T(~ ~ ,  y) - -  (AFo) -~ T(~) ~ ,  y) = - -  (A F ~ - '  T (~-I) ~, ~. 
(6) 

If we specify the spectral component ~J as the controling action on the i-th segment 
of the object's boundary, with zero actions specified for the remaining (n - i) segments, 
and if we solve system of equations (6) with the zero initial conditions T(x, y, 0) = 0, we 
will obtain the spectral influence function (SIF) Wij(x, y) [i]. 

Having thus determined the remaining SIF, we will represent the temperature at the ob- 
servation point s for the k-th instant of time in the form 

Institute for Problems in Machine Building, Academy of Sciences of the Ukrainian SSR, 
Khar'kov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 6, pp. 974-977, Dec- 
ember, 1989. Original article submitted May 25, 1988. 

0022-0841/89/5701-1483512.50 �9 1990 Plenum Publishing Corporation 1483 


